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Cavity formation at an inhomogeneity is examined by analysing the problem of a
plane circular elastic inclusion embedded in an unbounded elastic matrix subject to
remote equibiaxial, tensile or pure shear loading. Within the framework of infinites-
imal strain kinematics, nonlinear behaviour is confined to an interfacial cohesive
zone characterized by a nonlinear interface force–interface separation law requiring
a characteristic length for its prescription. Equilibrium solutions for symmetric and
non-symmetric cavity shapes (and their associated interfacial tractions) are sought
by approximation of the governing interfacial integral equations derived from the
Boussinesq–Flamant solution to the problem of a point force operative at a point of
a boundary. For an interval of values of characteristic length-inclusion radius ratio
only a symmetric cavity will form under increasing remote load. For other parameter
intervals the existence of a non-symmetric cavity is studied by performing a local
bifurcation analysis about the symmetrical equilibrium state. A global, post bifurca-
tion analysis is carried out by analysing the approximate equations computationally.
Stability of equilibrium states is assessed according to the Hadamard stability defini-
tion. The complexity of cavity nucleation phenomena is revealed through the predic-
tion of a diversity of behaviour ranging from the gradual formation of a symmetrical
cavity to the gradual or abrupt formation of a non-symmetrical cavity coincident
with the rigid displacement of the inclusion within the cavity. A brief, critical exam-
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2418 A. J. Levy

ination of the classical nucleation criteria (critical interfacial stress, critical energy
release) is undertaken as well in light of the results of the analysis.

1. Introduction

In this paper we investigate the mechanics of cavity nucleation† in solid material
under stress adopting the point of view that the phenomenon arises from the inter-
action between matrix, inclusion and the interface separating them. Furthermore,
because we wish to study the formation of cavities in its barest essence, we adopt
an infinitesimal strain framework and assume that nonlinear constitutive charac-
terization is confined to a vanishingly thin interfacial cohesive zone separating an
unbounded elastic matrix from a plane circular elastic inclusion. (The idea of direct
constitutive modelling of the interface appears to have first been suggested by Grif-
fith (1920) in the context of crack extension. More recently, it has been employed by
Needleman (1987) in his seminal work on cavity nucleation.) The loading considered
in this paper is taken to be equibiaxial, tensile, or pure shear and is assumed to be
applied remotely, consistent with two dimensional states of stress and strain. Within
this framework equilibrium solutions (for both symmetric and non-symmetric cavity
shapes) are sought based on an integral equation formulation together with known
elasticity solutions for circular domains. Brittle decohesion is treated as a problem of
bifurcation of equilibrium separation at the inclusion–matrix interface under which
stable non-symmetric cavities can form abruptly under uniform interface constitutive
characterization and symmetric conditions of inclusion geometry and remote loading.

It is not difficult to demonstrate that the classical nucleation criteria (critical inter-
facial stress criterion, energy criterion) often yield incorrect or incomplete predictions
of nucleation phenomena. Consider the problem of a remotely stressed unbounded
matrix with elastic moduli E, ν containing a rigid circular inclusion of radius R
(figure 1). Assume that the interface is such that tangential slip can occur freely
while separations normal to the interface are accompanied by relatively large inter-
face forces. The simplest problem of nucleation occurs when the loading is a remote
equibiaxial tension. In this situation cavity formation may be assumed to initiate
equally from all points along the interface. Classical approaches to the prediction of
cavity nucleation in such systems are based on the idea that nucleation is a critical
event visited upon the inclusion rigidly bonded (in this example, against normal sep-
aration only) at all points of contact to a deformed matrix (Tanaka et al. 1970; Argon
et al. 1975; Fisher & Gurland 1981). The two basic approaches (which have direct
parallels in crack extension problems) are the critical interfacial stress criterion and
the energy criterion alluded to previously. Thus, by the critical interfacial stress cri-
terion, nucleation is said to occur when the uniform normal traction on the interface
attains a critical value given by the interface strength σmax. For the simple system
under consideration the critical remote equibiaxial stress S∗S required for nucleation
is given by

S∗S =
σmax

2(1− ν)
, (1.1)

which follows from elementary plane rotationally symmetric elastic states. Note that

† That is, the formation of an unstressed cavity from a bonded inclusion.
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R

Figure 1. The planar inclusion problem.

(1.1) gives no clue as to the cavity shape after nucleation and, because only one char-
acteristic length has been introduced in the problem, does not indicate the depen-
dence of the critical load on inclusion radius. Furthermore, it is unclear as to precisely
what event occurs when the critical load is attained since it can be expected that
some separation of the (loaded) interface will in fact occur prior to the satisfaction
of (1.1). (This is more readily true for weak interfaces.) The energy criterion for
nucleation is an extension of the Griffith (1920) critical condition for crack growth,
the difference being that the Griffith criterion for cracks is local (applying to an
infinitesimal region ahead of the crack tip) while the energy criterion for nucleation
can be global, applying to the entire interface. Thus, when the total potential energy
stored in the rigidly bonded system becomes comparable to the total potential energy
(including the work of separation per unit area of the interface, φsep) of the system
in the fully decohered state, nucleation is said to occur. For the simple rotationally
symmetric system the critical remote stress is then given by

S∗E =
(

1 + ν)E
2(1− ν)2

φsep

R

)1/2

, (1.2)

where again use has been made of elementary rotationally symmetric elastic fields.
Note that in (1.2) the functional dependence of the critical stress on inclusion radius
occurs and is consistent with experimental observations that large inclusions nucleate
cavities prior to smaller ones (Argon & Im 1975; Goods & Brown 1979; Fisher &
Gurland 1981). In contrast to the critical interfacial stress criterion which fails to
assert precisely what event occurs when it is satisfied, the energy criterion asserts the
energetic feasibility of the transition between two well defined states. The difficulty
with (1.2) is that for its derivation the ‘nucleated’ or fully decohered state needs to
be asserted a priori. Obviously, this is all but impossible to do in systems subject to
complex remote loading. Less obvious is the fact that even for the simplest system
of rotationally symmetric geometry and loading the assumption of a rotationally
symmetric nucleated state is incorrect.

In Levy (1995) is was demonstrated, by direct modelling of the interface, that for
the simple system just described stable rotationally symmetric cavities must yield
to the formation of stable non-symmetric cavities when the interface force attains
its maximum value (σmax). Thus, the nucleated state is one for which the inclusion
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is rigidly displaced within the cavity and so is decohered on one side of its interface
and bonded, or partially bonded, on the other side. It appears then that, at least
for the simple system of rotationally symmetric geometry and loading, the critical
interfacial stress criterion implicitly defines nucleation to be the critical event which
coincides with the possibly abrupt transition from a stable rotationally symmetric
cavity to a much larger stable but non-symmetric cavity. Note, however, that prior to
the attainment of the interfacial strength there is separation at the interface (which
must occur for any (positive) remote stress regardless of its magnitude), while after
the attainment of the interfacial strength there is still traction which acts across the
interface. For this reason the critical stress criterion may give rise to critical remote
loads which underestimate those required for cavity nucleation (see §5). The energy
criterion for the prediction of nucleation appears to be even less useful owing to the
difficulty in defining a priori the nucleated state needed to implement the criterion.

When the (planar) remote loading is anything other then equibiaxial, the definition
and prediction of nucleation by the classical criteria becomes even more ambiguous.
To see this let the remote load be a tensile stress acting on the system just considered.
The critical interfacial stress criterion yields

S∗S =
5− 6ν

(11− 6ν)(1− ν)
σmax, (1.3)

where use has been made of the fact that the maximum interfacial traction occurs
at the two points where the radii are in line with the remote load. In deriving (1.3),
it is understood that the matrix elastic fields are obtained from interface boundary
conditions of normal displacement continuity and vanishing shear traction (Muskhe-
lishvili 1953). Because separation will occur (when the interface is modeled directly)
prior to the attainment of (1.3), and because it will generally not be true that (1.3)
is associated with some abrupt change in cavity shape, it is unclear as to precisely
what critical event is predicted with the satisfaction of (1.3). If the energy criterion
is employed, the total potential energy prior to nucleation may be calculated from
the elastic fields used to obtain (1.3), however, as for the case of remote equibiaxial
loading, it is not obvious how to choose the state after nucleation. In Tanaka et al.
(1970) the nucleated state is chosen to be such that the interface is free of stress in
the two regions of interface whose normals are approximately in line with the direc-
tion of loading, while everywhere else the matrix is in mechanical contact with the
inclusion. This assumption presupposes that the inclusion does not displace rigidly
at some point in the nucleation process (a hypothesis which may not be valid given
that in our example the interface does not support shear traction). One purpose of
the present work is to rigorously analyse the onset of nucleation in a simple system
and to assess nucleation criteria within that framework.

The paper is organized as follows. In §2, the formulation of the governing inte-
gral equations is reviewed and a reduction to a truncated set of nonlinear algebraic
equations is carried out. Necessary conditions for bifurcation of equilibrium cavity
shapes are presented as well. Section 3 contains detailed local analyses of bifurcation
behaviour under increasing remote equibiaxial load (two mode approximation), ten-
sile load (three mode approximation) and shear load (three mode approximation). A
global bifurcation analysis is carried out in §4 by numerically solving the governing
equations. Higher-order approximations are obtained for post bifurcation behaviour
and, in order to confirm the predictions, of the lower-order local analyses of §3. The
paper concludes with a brief critical assessment of the classical nucleation criteria
and closing comments.
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Figure 2. The circular inclusion.

2. Basic formulation

Consider a plane circular region R (the inclusion), bounded by a closed curve ∂R
with unit normal n and elastic moduli E∗, ν∗ contained within an unbounded matrix
with elastic moduli E, ν. Fix a Cartesian system† with origin at the inclusion centre,
point coordinates (x1, x2), base vectors (e1,e2) and introduce a polar coordinate
system with coordinates (r, θ) and base vectors (er,eθ) (figure 2). Assume that the
remote loading is a planar stress given by S∞ = S∞11e1 ⊗ e1 + S∞22e2 ⊗ e2 + ν(S∞11 +
S∞22)e3⊗e2 applied at r →∞. By the spectral decomposition theorem this form is the
most general planar remote loading so that S∞11 = S∞22 indicates equibiaxial loading,
S∞22 = 0 indicates tensile loading, S∞11 = −S∞22 indicates pure shear loading, etc.
Further assume that the interface cannot support shear and is such that a uniform
nonlinear constitutive relation couples the normal component of interface traction
(f) to the normal component of displacement jump ([ur]) across the interface. Then
the interface traction vector sI may be expressed in the form

sI(n; [ur]) = f([ur])n, (2.1)

where the explicit functional dependence of f on the interface coordinate (θ) is
absent owing to the assumed uniformity of the interface. Now owing to the rotational
symmetry of the geometry and the uniformity of the interface force law, cavities
symmetric with respect to the e1−e3 and e2−e3 planes can be expected to form under
the action of the remote load S∞. Stable non-symmetric cavities can be expected to
form as well, provided that the physical and geometrical parameters of the problem
assume certain values. A general framework for the prediction of symmetric and
non-symmetric cavity formation in systems subject to complex remote load and
an interface force (2.1) has been presented by Levy (1991) in the form of integral
equations governing the separation at a circular interface. Certain of those results
are presented below without derivation.

For arbitrary, planar remote loads, the (Fredholm) integral equation governing the
normalized radial component of displacement jump (u = [ur]/R) has been shown to

† Tensor notation used in this paper is consistent with Gurtin (1984).
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be of the form

u(θ) = hr(θ) +
∫ 2π

0
f(u(θ′))Kr(θ − θ′) dθ′, (2.2)

where Kr is a symmetric, weakly singular kernel. The term hr is the (normalized)
radial displacement of the inner boundary of a circular cavity in remote stress field
S∞ and is proportional to linear combinations of the ratios S∞11/E, S∞22/E. The
normalized circumferential component v = [uθ]/R has been shown to be governed
by an integral expression

v(θ) = hθ(θ) +
∫ 2π

0
f(u(θ′))Kθ(θ − θ′) dθ′, (2.3)

where hθ is the normalized circumferential displacement at the inner boundary of a
circular cavity (also proportional to linear combinations of the ratios S∞11/E, S∞22/E).
Note that in (2.3), v is determined by integration once the integral equation (2.2) has
been solved for u. In order to complete the description, rigid-body force equilibrium
of the inclusion is enforced through the integral equations∫ 2π

0
f(u(θ′)) cos(θ′) dθ′ = 0,

∫ 2π

0
f(u(θ′)) sin(θ′) dθ′ = 0. (2.4)

Moment equilibrium is guaranteed through the interface force law assumption (2.1).
Explicit expressions for Kr, Kθ and hr, hθ are given in Appendix A.

Nonlinear integral equations of the type given by (2.2) can be put in the standard
Hammerstein form

u(θ) +
∫ 2π

0
F (θ′, u(θ′))K̃(θ, θ′) dθ′ = 0, (2.5)

by writing hr (given explicitly by (A 6)) in the form hr(θ) =
∫ 2π

0 g(θ)Kr(θ − θ′) dθ′.
This linear Fredholm integral equation of the first kind can be easily solved for
g (note (A 1)–(A 4)), so that F in (2.5) has the representation F = f(u) + λ0h0 +
λ3h3 cos 2θ, where λ0, λ3 are eigenvalues of the kernel Kr given by (A 2), (A 3) and h0,
h3 are given in (A 6). Note that in (2.5), K̃ = −Kr. The basic conditions required
for Hammerstein’s theorem on the existence of solutions to (2.5) are that (i) the
kernel be symmetric, (ii) the kernel be quadratically integrable and (iii) the kernel
have positive eigenvalues. These conditions are seen to hold for K̃ (= −Kr) (Levy
1991). Furthermore, a continuous solution to (2.5) will exist, provided the function
F is contiuuous and such that it satisfies the condition

|F (u, θ)| = |f(u) + λ0h0 + λ3h3 cos 2θ| 6 C1|u|+ C2, (2.6)

where C1 and C2 are positive constants and C1 is less than the first eigenvalue −λ0
of the positive kernel K̃. Thus, (2.6) contrains the functional form of the interface
force law f required to yield solutions to (2.2). Assume that f is such that it satisfies
(2.6).

Now the symmetry of the kernel Kr and the proof of Hammerstein’s theorem
(Tricomi 1985) on the existence of solutions to (2.5) suggest that an approximate
solution to (2.2) (and (2.4)) be sought in the form of an eigenfunction expansion,

u(θ) =
√

2πu0ϕ0 +
√
π

n∑
i=1

uiϕi(θ), (2.7)
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On the nucleation of cavities in planar elasticity 2423

where the ϕi are the orthonormal eigenfunctions given by (A 4) and the ui are the
unknown coefficients determined so as to satisfy (2.2) and (2.4). The expansion (2.7),
along with the orthogonality of the eigenfunctions, reduces (2.2) and (2.4) to a system
of n + 1 nonlinear algebraic equations governing the n + 1 coefficients u0, ui, i =
1, 2, . . . , n:

√
2πu0 − 1

λ0

∫ 2π

0
f(ui; θ′)ϕ0 dθ′ −

√
2πh0 = 0, (2.8 a)∫ 2π

0
f(ui; θ′)ϕ1(θ′) dθ′ = 0, (2.8 b)∫ 2π

0
f(ui; θ′)ϕ2(θ′) dθ′ = 0, (2.8 c)

√
πu3 − 1

λ3

∫ 2π

0
f(ui; θ′)ϕ3(θ′) dθ′ −√πh3 = 0, (2.8 d)

√
πuj − 1

λj

∫ 2π

0
f(ui; θ′)ϕj(θ′) dθ′ = 0, j = 4, 5, . . . , n. (2.8 e)

Without loss of generality assume that the remote loading S∞ is such that S∞11 > 0
so that even solutions exist, i.e. u2p = 0, p = 1, 2, . . . (This follows from the fact
that f(u1; θ) will be even in θ and (2.8 c) and (2.8 e) (with j = 2p, p = 2, 3, . . .) are
identically satisfied owing to the vanishing of the integral, from 0 to 2π, of an odd
function.) Solutions to the modified system,

√
2πu0 − 1

λ0

∫ 2π

0
f(u0, u2i−1; θ′)ϕ0 dθ′ −

√
2πh0 = 0, (2.9 a)

∫ 2π

0
f(u0, u2i−1; θ′)ϕ1(θ′) dθ′ = 0, (2.9 b)

√
πu3 − 1

λ3

∫ 2π

0
f(u0, u2i−1; θ′)ϕ3(θ′) dθ′ −√πh3 = 0, (2.9 c)

√
πu2j−1 − 1

λ2j−1

∫ 2π

0
f(u0, u2i−1; θ′)ϕ2j−1(θ′) dθ′ = 0, j = 3, 4, . . . , (2.9 d)

may now be taken in the form

u(θ) =
√

2πu0ϕ0 +
√
π

n∑
i=1

u2i−1ϕ2i−1(θ), (2.10)

with ϕ0 = 1/
√

2π, ϕ2i−1 = cos iθ/
√
π. We expect that there will be symmetrical

solutions (with respect to the e2 − e3 plane) to (2.10) for some range of physi-
cal and geometrical parameters. (The proof of this assertion, i.e. that u2k−1 = 0,
k = 1, 3, 5, . . . , satisfies (2.9 b), (2.9 d) with j odd, is given in Appendix B.) Symmet-
rical solutions u(θ) = u(θ + π) (with zero rigid-body displacement) are of the form
u = u0 +

∑n
p=1 u4p−1 cos 2pθ, with the remaining coefficients governed by (2.9 a),

(2.9 c), (2.9 d) with j even. In the following sequel we assume all parameters which
arise in the description of the interface force law to be fixed along with the inclusion
radius (R) and the material properties of matrix and inclusion. We seek the behaviour
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of solutions to (2.9) under a varying measure of remote loading characterized by h0,
h3 (A 6). In particular, we are concerned with bifurcations from symmetrical equilib-
rium cavity shapes (which are assumed to occur for small measures of remote loading)
to either adjacent symmetrical cavity shapes, or to non-symmetrical cavity shapes.
The implicit function theorem implies that equilibria described by smooth functions
of bifurcation parameter exist at those values for which the Jacobian determinant
of the nonlinear algebraic system is non-vanishing. Thus, a necessary condition for
bifurcation, i.e. for different branches of equilibria to meet, is for the determinant of
the Jacobian matrix J to vanish. For the system (2.9), we have detJ = 0, where
detJ is given by ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A 0 B 0 · · ·
0 C 0 D · · ·
E 0 F 0 · · ·
0 G 0 H · · ·
...

...
...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.11)

where

A = 1− λ−1
0

2π

∫ 2π

0
Duf dθ, B = −λ

−1
0

2π

∫ 2π

0
Duf cos 2θ dθ,

C =
1√
π

∫ 2π

0
Duf cos2 θ dθ, D =

1√
π

∫ 2π

0
Duf cos θ cos 3θ dθ,

E = −λ
−1
3

π

∫ 2π

0
Duf cos 2θ dθ, F = 1− λ−1

3

π

∫ 2π

0
Duf cos2 2θ dθ,

G = −λ
−1
5

π

∫ 2π

0
Duf cos 3θ cos θ dθ, H = 1− λ−1

5

π

∫ 2π

0
Duf cos2 3θ dθ.

Note that detJ is evaluated at the symmetrical solution so that Duf(θ) = Duf(θ+
π). In the expression for detJ , use has been made of the fact that integrals of the
form

Iij =
∫ 2π

0
Γ (θ) cos iθ cos jθ dθ,

with Γ (θ) = Γ (θ + π), are such that

Iij =



0, i odd, j even,

2
∫ π

0
Γ (θ) cos iθ cos jθ dθ, i, j odd,

2
∫ π

0
Γ (θ) cos iθ cos jθ dθ, i, j even.

(For proof of this assertion see Appendix B.) Owing to the alternating null entries
in the Jacobian determinant it is possible to write detJ as the product of two lower-
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order determinants detJs, detJu given by

detJs =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1− λ−1
0

2π

∫ 2π

0
Duf dθ −λ

−1
0

2π

∫ 2π

0
Duf cos 2θ dθ · · ·

−λ
−1
3

π

∫ 2π

0
Duf cos 2θ dθ 1− λ−1

3

π

∫ 2π

0
Duf cos2 2θ dθ · · ·

...
...

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.13)

detJu =

∣∣∣∣∣∣∣∣∣∣∣∣

1√
π

∫ 2π

0
Duf cos2 θ dθ

1√
π

∫ 2π

0
Duf cos θ cos 3θ dθ · · ·

−λ
−1
5

π

∫ 2π

0
Duf cos 3θ cos θ dθ 1− λ−1

5

π

∫ 2π

0
Duf cos2 3θ dθ · · ·

...
...

∣∣∣∣∣∣∣∣∣∣∣∣
.

(2.14)
Thus, the vanishing of either detJs or detJu is a necessary condition for bifurcation
of the symmetrical solution u. Furthermore, the condition detJs = 0 governs sym-
metrical bifurcations, i.e. transitions from a symmetrical equilibrium state to a sym-
metrical equilibrium state, while detJu = 0 governs non-symmetrical bifurcations
(transitions from a symmetrical equilibrium state to a non-symmetrical equilibrium
state). This follows from the fact that (2.9 b) and (2.9 d) with j odd are identically
satisfied for symmetrical solutions.

Both detJs = 0 and detJu = 0 represent constraints on the slope of the interface
force–separation curve required for bifurcation. For the case where the remote load
is equibiaxial (S∞11 = S∞22), the constraint detJu = 0 takes on a particularly simple
form. To see this note that (A 6) implies that h3 = 0 and so rotationally symmetric
solutions to (2.9) are uniform and given by û, ui = 0, i = 1, 2, . . . . In this situation
the system (2.9) reduces to a single nonlinear algebraic equation governing û0:

û0 − λ−1
0 f(û0)− h0 = 0. (2.15)

Noting that Du0f is now uniform, independent of θ, the symmetric and non-
symmetric bifurcation conditions assume the form

detJs =

∣∣∣∣∣∣∣∣
1− λ−1

0 Du0f 0 0 · · ·
0 1− λ−1

3 Du0f 0 · · ·
...

...
...

∣∣∣∣∣∣∣∣ ,

detJu =

∣∣∣∣∣∣∣∣
Du0 0 0 · · ·

0 1− λ−1
5 Du0f 0 · · ·

...
...

...

∣∣∣∣∣∣∣∣ .
Now assume that the interface force is such that it is monotonically increasing on
(−∞, umax), monotonically decreasing on (umax,∞) and such that umax > 0 and
f(0) = 0. Then, because the eigenvalues λi are all negative, an inspection of the bifur-
cation conditions reveal that a non-symmetric bifurcation occurs (when Du0f = 0)
prior to a symmetric one which must occur when the interface force is on the descend-
ing branch of the interface force–separation curve. Thus, bifurcation under remote
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Figure 3. The interface force law.

equibiaxial loading first occurs when the interface force law attains its maximum val-
ue. (Symmetric and non-symmetric bifurcations of (2.15) have been studied in detail
in Levy (1994) and Levy (1995), respectively.) Unfortunately, when the remote load-
ing is other then equibiaxial a simple bifurcation condition (analogous to Du0f = 0)
no longer exists, in part because Duf is no longer uniform. If Duf is expanded in a
Fourier series in eigenfunctions 1/

√
2π, cos 2pθ/

√
π, then the vanishing of (2.13) and

(2.14) each represent an equation relating the coefficients in the expansion. These
relations, which characterize how the interfacial traction is distributed at bifurcation,
are extremely complicated and contain little physical or geometrical insight in their
general form. They will not be presented here although distributions of interfacial
traction at bifurcation will be presented in §4 for a specific functional form of f .

The (normalized) circumferential displacement jump v (= [uθ]/R) is fixed, through
(2.3), by the normal component of normalized displacement jump u (recall that the
inclusion is assumed to be smooth so that no tangential tractions develop at the
interface). Thus, v follows from an expansion of the type (2.7), i.e.

v(θ) =
√

2πv0ϕ0 +
√
π

n∑
i=1

viϕi(θ), (2.16)

where the eigenfunctions ϕi are given in Appendix A. In order to determine the
expanded form of the integral expression (2.3), substitute (2.16) into (2.3) making
use of expansions for u (2.7), for Kθ (A 5), and for hθ (A 6). Orthogonality of eigen-
functions yields the mode multipliers vi:

v0 = 0,

v2n =
1√
π

∫ 2π

0
hθ(θ)ϕ2n(θ) dθ +

c+ c′n√
π(n2 − 1)

∫ 2π

0
f(uk; θ)ϕ2n−1(θ) dθ,
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v2n−1 =
1√
π

∫ 2π

0
hθ(θ)ϕ2n−1(θ) dθ − c+ c′n√

π(n2 − 1)

∫ 2π

0
f(uk; θ)ϕ2n(θ) dθ,

n = 2, 3, . . . ,

where c, c′ follow from (A 5). Note that coefficients in v which are proportional to sin θ
and cos θ do not appear in the expressions for vi owing to the fact that rigid-body
equilibrium conditions (2.4) constrain the coefficients v1, v2 to be such that v1 = u2,
v2 = −u1. If the inclusion is taken to be rigid, and non-symmetric separation is
assumed to be even in θ (u2n = 0, n = 1, 2, 3, . . .), then the mode multipliers assume
the form

v0 = 0, v1 = 0, v2 = −u1, v2n−1 = 0,

v2n =
1
π

∫ 2π

0
hθ(θ) sinnθ dθ +

1
π(n2 − 1)

[
2(1− ν2)

E
+ n

(1 + ν)(1− 2ν)
E

]
×
∫ 2π

0
f(uk; θ) cosnθ dθ, n = 2, 3, . . . . (2.17)

The circumferential displacement jump v then follows directly from (2.16), (2.17)
and the mode multipliers ui.

We assume for the remainder of the paper that the interface traction f is governed
by the physically based force law of Ferrante et al. (1982) given by

f : u→ eσmaxβ(u/µ) exp(−βu/µ) (2.18)

and depicted in figure 3. In (2.18), σmax is the interface strength, µ is the (positive)
length parameter, i.e. the ratio of force length† (δ > 0) to inclusion radius (R), β is a
fit parameter which can be arbitrarily set provided δ is regarded as a phenomenolog-
ical parameter and e = exp(1). (The value β = 4.8325 is that for which the work of
separation of (2.18) is equal to the work of separation for the third degree polynomial
approximation of f .) Note that this force law satisfies the requirement (2.6) for the
existence of solutions to governing integral equation (2.2).

3. The bifurcation problem

(a ) General results for the three mode approximation
In this section we analyse the character of local bifurcations in a reduced system

subject to remote equibiaxial load, remote tension and remote pure shear. Although
not formally demonstrated, it is tacitly assumed through most of this section that
bifurcation behaviour in the reduced system carries over to the exact solution of
(2.2), (2.4) and (2.18), at least qualitatively. (This assumption will be considered
further in the next section where higher-order approximations to the exact solution
are shown to yield qualitatively similar results for equibiaxial and tension loading
but not for pure shear loading.) Now consider the radial interfacial separation u(θ)
to be composed of two symmetric modes and one non-symmetric rigid-body mode,

u(θ) = u0 + u1 cos θ + u3 cos 2θ,

where the coefficients u0, u1, u3 are governed by the three term approximation of
(2.9). It is convenient to write the three mode system in terms of the dimensionless

† Physically, δ characterizes the range of action of the force law (2.18).
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variables w0, w1, w3, defined by

w1 + βuiµ
−1, i = 0, 1, 3, (3.1)

and also to be such that the Jacobian matrix is symmetric. Thus, Fi(w0, w1, w3) = 0,
i = 1, 2, 3, where

F1(wi) = µw0 − βh0 +
α0

2π

∫ 2π

0
(w0 + w1 cos θ + w3 cos 2θ)e−(w0+w1 cos θ+w3 cos 2θ) dθ,

F2(wi) =
α0

2π

∫ 2π

0
(w0 + w1 cos θ + w3 cos 2θ)e−(w0+w1 cos θ+w3 cos 2θ) cos θ dθ,

F3(wi) =
α0

2α3
(µw3 − βh3)

+
α0

2π

∫ 2π

0
(w0 + w1 cos θ + w3 cos 2θ)e−(w0+w1 cos θ+w3 cos 2θ) cos 2θ dθ (3.2)

and α1 = −eσmaxλ
−1
1 β > 0 (recall the eigenvalues λi are negative (A 3)). The sym-

metrical solution (ŵ0, 0, ŵ3) satisfies the system F (w0, w1, w3) = 0, provided ŵ0, ŵ3
are solutions to the nonlinear equations

F1(ŵ0, 0, ŵ3) = µŵ0 − βh0 + α0e−ŵ0 [ŵ0I0(ŵ3)− ŵ3I1(ŵ3)] = 0, (3.3 a)

F3(ŵ0, 0, ŵ3) =
α0

2α3
(µŵ3 − βh3) + α0e−ŵ0 [−(1 + ŵ0)I1(ŵ3) + ŵ3I0(ŵ3)] = 0,

(3.3 b)

where In is the modified Bessel function of the first kind of order n. (For this solution,
F2(ŵ0, 0, ŵ3) = 0 is satisfied identically.) Note that, in deriving (3.3), use has been
made of the result (Gradshteyn & Ryzhik 1994)∫ 2π

0
cosmz exp(p cos z) dz = 2πIm(p) (3.4)

and the recursion formulas connecting the In (Watson 1995). The Jacobian deter-
minants detJs (2.13) and detJu (2.14) for the three mode approximation and the
notation (3.1) may be written in the symmetrical forms

detJs =

∣∣∣∣∣ A B
B C

∣∣∣∣∣ , (3.5 a)

where

A = µ+ α0e−w0 [(1− w0)I0 + w3I1],
B = α0e−w0 [w0I1 − w3I0],

C =
µα0

2α3
+ α0e−w0 [(w3 + w−1

3 + w0w
−1
3 )I1 − w0I0],

and
detJu = 1

2α0e−w0 [(1− w0 − w3)I0 + (w0 + w3)I1], (3.5 b)
where it is understood that the argument of the Bessel functions is w3. For a given
remote loading (h0, h3), (3.1) and (3.3) can be solved for the coefficients (u0, u3),
yielding the two mode symmetrical solution u(θ) = u0 + u3 cos 2θ. Calculations for
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the solution under various remote loads are postponed until the next section when
higher-order approximations will be computed numerically. Here we are concerned
primarily with the character of bifurcations which occur from symmetrical solution
states and so we seek those (bifurcation) points corresponding to solutions of (3.3)
subject to either of the constraints detJs = 0, detJu = 0.

At this stage there is no reason to assert that the stability† of the equilibrium states
before and after bifurcation can be assessed within the usual framework of finite
dimensional dynamical systems theory, i.e. according to the signs of the eigenvalues
of the Jacobian matrix of the vector field‡ evaluated at the equilibrium point. In the
present development we are concerned with equilibrium states governed by equations
which have been derived from elastostatics, so that information on the stability of
a particular equilibrium state can only be obtained with the introduction of an
additional criterion. In the present work we adopt Hadamard’s definition of stability
(herein called Hadamard stability) based on the statical energy criterion (Knops &
Wilkes 1973). Thus, for our approximate non-dissipative inclusion–interface matrix
system we assert the existence of a total potential energy function which depends on
the three separation modes, i.e. Φ : {u0, u1, u3} → Φ(u0, u1, u3), and which can be
defined through its gradients according to

∂Φ
∂u0

= βµ−1F1, (3.6 a)

∂Φ
∂u1

= βµ−1F2, (3.6 b)

∂Φ
∂u3

= βµ−1F3, (3.6 c)

where the Fi are given in (3.2) and use has been made of (3.1). Hadamard’s sta-
bility criterion defines an equilibrium state {û0, û1, û3} to be locally stable provid-
ed that the total potential energy Φ evaluated at a point {u0, u1, u3}, contained
in a neighbourhood of {û0, û1, û3}, is such that Φ(u0, u1, u3) > Φ(û0, û1, û3). This
criterion may be expressed in terms of the positive definiteness of the quadratic
form, Q(ξ0, ξ1, ξ3) =

∑
i,j=0,1,3 ∂

2Φ/(∂ui∂uj)ξiξj , evaluated at the equilibrium state
being tested. A sufficient condition for local stability is therefore that the eigenvalues
(ω0, ω1, ω3) of Q(ξ0, ξ1, ξ3) = ω0ξ

2
0 +ω1ξ

2
1 +ω3ξ

2
3 be positive at the equilibrium being

tested. By virtue of (3.6), we can now assert that Hadamard stability of equilib-
ria is equivalent to requiring positive eigenvalues of the Jacobian matrix of partial
derivatives of the Fi ((3.2)) (evaluated at equilibrium).

In the following subsections, local bifurcation analyses are carried out for the case
of remote equibiaxial load, remote tensile load and remote pure shear load.

(b ) Equibiaxial load
For the case where the remote load is equibiaxial, S∞11 = S∞22 and h3 = 0, so that

the bifurcation parameter h0 is given by h0 = 2(1− ν2)S∞11/E. Then (3.3) and (3.5)
reduce to

F1(w0) = µw0 + α0e−w0w0 − βh0 = 0, (3.7 a)
detJu = 1− w0 = 0, (3.7 b)

† Stability in the sense of Liapounov (Hirsch & Smale 1974).
‡ That is, vector field F : Rn → Rn in x′ + F (x) = 0.
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detJs = µ+ α0e−w0(1− w0) = 0. (3.7 c)

Clearly, bifurcation will first occur when detJu vanishes, since detJs is positive for
w0 ∈ [0, 1]. Thus, non-symmetrical bifurcation will occur when w0 = 1 which, with
the help of (3.6 a), may be written as

µ+ β
[
(1 + ν∗)(1− 2ν)

σmax

E
+ (1 + ν)

σmax

E

]
− 2(1− ν2)β

S∞11

E
= 0, (3.8)

where use has been made of (A 2) (recall that α1 = −eσmaxλ
−1
1 β). This equation

may be used to find the critical value of remote load required to precipitate non-
symmetrical decohesion. Note that w0 = 1 corresponds to u0 = µβ−1 which, from
(2.18), locates the maximum interface traction attainable σmax. Thus, transition
occurs when the interface force reaches its maximum value. Furthermore, because
the pre-bifurcated state under equibiaxial loading is rotationally symmetric (and
therefore describable by a single uniform mode), the results obtained are exact and
consistent with Levy (1994, 1995).

From herein we assume the following values for the constitutive properties of the
matrix, inclusion and interface:

σmax = 0.006E, ν = 0.30, E∗ →∞ (rigid inclusion), β = 4.8325, (3.9)

which fix β, α0, α3 by (A 2) and (A 3) and the definition of αi (= −eσmaxλ
−1
i β). Note

that we choose no specific value for the force length parameter µ, since we seek the
nature of the first bifurcation point, at bifurcation parameter h0, for different ranges
of parameter µ (this is in contrast to Levy (1995), where the bifurcation parameter
was taken to be µ). Thus, based on the solution to (3.7), the bifurcation behaviour
may be classified as follows:

µ ∈ (0.0138,∞), 1 (non-symmetrical) root,
µ ∈ (0, 0.0138), 1 (non-symmetrical) + 2 (symmetrical) roots,

}
, (3.10)

where the term non-symmetrical root means that a transition to a non-symmetrical
equilibrium state will occur for some value of remote load given by (3.8). Alternative-
ly, the term symmetrical root indicates that a bifurcation of equilibrium may occur
which retains rotational symmetry. As noted previously, these bifurcations (governed
by detJs) will not occur unless, of course, the inclusion is constrained against rigid
displacement. All bifurcation points which initiate from a rotationally symmetric
equilibrium state are indicated in (3.10).

Now, in the pre-bifurcated, rotationally symmetric state, cavity shapes are
described exactly by circles so we anticipate that only a two term approximation
to the separation will be required (i.e. a uniform mode and a non-uniform rigid-body
mode). Thus, consider the first two equations in (3.2) which govern the uniform
mode multiplier u0 (or w0) and the non-uniform rigid-body mode multiplier u1 (or
w1). Because bifurcation will occur when w0 = 1, we introduce variables γ = w0,
x = βh0, y = w1 such that the bifurcation parameter is w0. Then the equations
governing (x, y, γ) are

F1(x, y; γ) = µγ − xα0e−γ [γI0(y)− yI1(y)] = 0,

F2(y; γ) = 1
2α0e−γ [−2γI1(y) + yI0(y) + yI2(y)] = 0, (3.11)

where use has been made of (3.2) and (3.4). Uniform equilibrium solutions are of the
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Figure 4. Pitchfork bifurcation. (a) Supercritical. (b) Subcritical. (Stable equilibrium, solid
line; unstable equilibrium, broken line).

form (x̂, 0; γ), so that F2(y; γ) = 0 is identically satisfied and F1(x, y; γ) = 0 results
in (3.7 a). Now the Jacobian matrix for the system (3.11) can be readily calculated
and, when evaluated at the uniform equilibrium (x̂, 0; γ), assumes the form[

−1 0
0 − 1

2α0(γ − 1)e−γ

]
,

where the 2×2 entry is proportional to Du0f . Thus, at bifurcation (x, y, γ) = (x̄, 0, 1),
the matrix has a single zero eigenvalue. Because the equation F2(y; γ) = 0 governs
the bifurcating variable y, i.e. it is independent of x, it may be analysed separately.
Thus, it is easy to show that the following relations hold:

F2(0; 1) = 0,
∂F2

∂y
(0; 1) = 0,

∂F2

∂γ
(0; 1) = 0,

∂2F2

∂y2 (0; 1) = 0,

∂2F2

∂y∂γ
(0; 1) = −1,

∂3F2

∂y3 (0; 1) = 3
2 ,

so that the solution undergoes a pitchfork bifurcation (Guckenheimer & Holmes
1983; Wiggins 1990) at (y; γ) = (0; 1) (or w1 = 0, w0 = 1). Furthermore, because
the ratio −(∂3F2/∂y

3(0; 1))/(∂2F2/∂y∂γ(0; 1)) is positive, the pitchfork is always
supercritical, independent of the value of the force length parameter µ (figure 4a).
The geometrical meaning of this result is that the non-uniform rigid-body mode
multiplier w1 always increases with increasing uniform separation mode multiplier
w0 > 1, i.e. after the interface force has attained its maximum value. (Note that
stability of equilibria is not assessed according to the sign of the eigenvalues of the
Jacobian (of (3.12)) owing to the change of variables used to derive (3.11).

Now shift the bifurcation point (x̄, 0; γ̄ = 1) to the origin by introducing the
variables u = x− x̄, v = y, and ρ = γ− 1 and expand (3.11) in a Taylor series about
the point (u, v) = (0, 0). The result is given by

f(u, v; ρ) = a0(ρ)− u+ a2(ρ)v2 +O(4) = 0, (3.12 a)
g(v; ρ) = b1(ρ)v + b3(ρ)v3 +O(5) = 0, (3.12 b)

where the coefficients are given in Appendix C and are such that a0(0) = 0, a2(0) =
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− 1
4α0e−1, b1(0) = 0 and b3(0) = 1

8α0e−1. Now, if terms of order 4 and higher are
neglected, solutions to (3.12 b) are given by

v = y = w1 = 0, v = y = w1 = ±2
√

2
√

ρ

2− ρ = ±2
√

2
√
w0 − 1
3− w0

. (3.13)

With the aid of (3.13), solutions to (3.12 a) are seen to be of the form

u = a0(ρ), u = a0(ρ) + a2(ρ)
[

8ρ
2− ρ

]
. (3.14)

Equations (3.13) and (3.14) describe the behaviour of the rigid-body mode multi-
plier w1, and the load parameter βh0, as the uniform mode multiplier w0 increases
through the bifurcation point (w0 = 1). In order to understand whether or not the
non-symmetrical transition is gradual or abrupt under increasing load we need to
construct the function w1 : h0 → w1(h0). Thus, eliminate ρ between the second
equation in (3.13) and the second equation in (3.14) to obtain

u = 1
4(µ− α0e−1)v2 +O(4),

where use has been made of (3.7 a). Thus, the equilibrium states are governed by

w1 = ±
√
βh0 − βh̄0

µ− α0e−1 , w1 = 0, (3.15)

which represents a pitchfork bifurcation at βh0 = βh̄0. An inspection of (3.15) indi-
cates that when µ > α0e−1, the pitchfork is supercritical (figure 4a) and when
µ < α0e−1, the pitchfork is subcritical (figure 4b). This result is significant in that
it indicates the parameter values for which the bifurcation at maximum interface
force leads to a transition in interfacial separation which is gradual (µ > α0e−1) or
abrupt (µ < α0e−1). That a gradual transition to non-symmetrical equilibrium states
occurs when µ > α0e−1 is apparent directly from figure 4a by noting the stability
of the branches emanating from the bifurcation point. When µ < α0e−1, however,
a rotationally symmetric branch of equilibria meets three unstable branches (two of
which yield non-symmetrical states) at the bifurcation point. Thus, it appears that a
local analysis of bifurcation is unable to determine behaviour. In §4, a global analysis
is carried out which identifies adjacent stable equilibria so that, for µ < α0e−1, an
abrupt transition occurs at bifurcation. (For the case of a rigid inclusion, this con-
dition assumes the form µ < βσmax(1 + ν)/E.) A further classification of behaviour,
based on the two mode approximation is given by

µ ∈ (0.0377,∞), 1 non-symmetrical bifurcation, supercritical,

µ ∈ (0.0138, 0.0377), 1 non-symmetrical bifurcation, subcritical,

µ ∈ (0, 0.0138), 1 non-symmetrical
+2 symmetrical bifurcations, subcritical,


, (3.16)

where supercritical (subcritical) corresponds to the local bifurcation behaviour
illustrated in figure 4a (figure 4b). Note that there are essentially two kinds of
behaviour. The first corresponds to gradual non-symmetrical separation after bifurca-
tion (when µ ∈ (0.0377,∞)) and the second, to abrupt non-symmetrical separation
after bifurcation (when µ ∈ (0, 0.0377)). If, however, the inclusion is constrained
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against rigid displacement, then gradual rotationally symmetric separations occur
for µ ∈ (0.0138,∞), while abrupt rotationally symmetric separations will occur for
µ ∈ (0, 0.0138).

(c ) Tensile load
Remote uniaxial tension (S∞11 > 0, S∞22 = 0) is characterized by the parameters

h0 = (1−ν2)S∞11/E and h3 = 2h0. For this remote load, the displacement jump is non-
uniform (but symmetric) in the pre-bifurcated state. Because of this, an additional
degree of approximation is involved corresponding to the approximate characteriza-
tion of the pre-bifurcated state. The simple geometrical condition that bifurcation
under equibiaxial load occurs when the interface force attains its maximum value is
therefore no longer available for more complex loading.

With h3 = 2h0, eliminate h0 between (3.3 a), (3.3 b) to obtain the equation
G(w0, w3) = 0 governing the two symmetric mode multipliers. Thus, consider the
system

G(w0, w3) = µ(w0 − 1
2w3) + e−w0 [(α0w0 − α3w3)I0 + (α3 + α3w0 − α0w3)I1] = 0,

(3.17 a)

detJs = 0, (3.17 b)

detJu = 0, (3.17 c)

where the argument of the modified Bessel functions is w3 and the last two expres-
sions (of (3.17)) are given by (3.5). It is a straightforward matter to solve† (3.17)
for those values of µ for which symmetrical bifurcation may occur (roots to (3.17 a)
and (3.17 b)) and for which non-symmetrical bifurcation may occur (roots to (3.17 a)
and (3.17 c)). In the event that no solution to either (3.17 a) and (3.17 b), or (3.17 a)
and (3.17 c) can be found, then bifurcation of equilibrium does not occur for those
µ parameter values. Thus we have

µ ∈ (0.1064,∞), no roots,
µ ∈ (0.0109, 0.1064), 2 (non-symmetrical) roots,
µ ∈ (0, 0.0109), 2 (symmetrical) + 2 (non-symmetrical) roots,

 (3.18)

where it is understood that all bifurcation points which initiate from the branch of
symmetrical equilibria are indicated at that particular value of µ. In order to deter-
mine which bifurcation point will occur first (at a given value of µ ∈ (0, 0.0109)), we
need to compute the corresponding value of h0 for each bifurcation point. This fol-
lows directly from (3.3 a) (or (3.3 b)). In this way it can be demonstrated numerically
that non-symmetrical bifurcation always preceeds (i.e. initiates with a lower value
of h0) symmetrical bifurcation. The conditions detJs = 0, detJu = 0 are, in fact,
only necessary conditions for bifurcation and it remains to investigate the detailed
character of the transitions which occur at the non-symmetrical bifurcation points
described in (3.18).

Consider (3.2) with h3 = 2h0. Because the necessary condition for bifurcation
detJu = 0 ((3.5 b)) is in essence a functional relationship between w0 and w3 (explic-
itly independent of the remote load) it is convenient to rewrite (3.2) so that (i) the

† Maple Waterloo Software (1994).
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bifurcation parameter is w0 and (ii) the determination of βh0 is uncoupled from w1,
w3. Thus, consider the reduced system

f1(y, z; γ) = 0 = µ(γ − 1
2z)

+
1

2π

∫ 2π

0
(α0 − α3)(γ + y cos θ + z cos 2θ)e−(γ+y cos θ+z cos 2θ) dθ,

f2(y, z; γ) = 0 =
1

2π

∫ 2π

0
α0 cos θ(γ + y cos θ + z cos 2θ)e−(γ+y cos θ+z cos 2θ) dθ, (3.19)

where γ = w0, z = w3, y = w1 and x = βh0 is determined from

x = µγ +
1

2π

∫ 2π

0
α0(γ + y cos θ + z cos 2θ)e−(γ+y cos θ+z cos 2θ) dθ. (3.20)

An equilibrium solution to system (3.17) is (y, z) = (0, ẑ), provided

f1(0, ẑ; γ) = µ(γ − 1
2 ẑ) + e−γ [(α0γ − ẑα3)I0 + (γα3 − ẑα0 + α3)I1] = 0, (3.21)

where use has been made of (3.4) and it is understood that the argument of the
Bessel functions is ẑ. Note that f2(0, ẑ; γ) = 0 identically and x̂ follows from

x̂ = µγ + α0e−γ [γI0 − ẑI1]. (3.22)

Starting from (3.19), it is a straightforward calculation to obtain the Jacobian deter-
minant at the equilibrium (0, ẑ). As expected, the determinant vanishes when (3.5 b)
is satisfied or, equivalently, when

γ(z) =
I0(z)− zI0(z) + zI1(z)

I0(z)− I1(z)
, (3.23)

which is a necessary condition for non-symmetrical bifurcation. The equilibrium state
(x, y, z; γ) = (x̄, 0, z̄; γ̄) at bifurcation is therefore determined by (3.21)–(3.23). In
order to examine the character of the equilibrium solutions near the bifurcation
point, we expand (3.19) in a Taylor series about this point retaining terms up to
second order. Thus,

fρ(u, v) = c0(ρ) + c1(ρ)u+ c2(ρ)u2 + c3(ρ)v2 +O(3) = 0,
gρ(u, v) = d1(ρ)v + d2(ρ)uv +O(3) = 0, (3.24)

where
u = z − z̄ = w3 − w̄3, v = y = w1, ρ = γ − γ̄ = w0 − w̄0. (3.25)

In a similiar manner, (3.20) can be expanded as well, yielding

w = e0(ρ) + e1(ρ)u+ e2(ρ)u2 + e3(ρ)v2 +O(3), (3.26)

where w = x − x̄ = βh0 = βh̄0. Note that the ci, di, ei coefficients are given in
Appendix C. The system (3.24) may be written in the decoupled forms

Fρ(v) = v(Σ0(ρ) + Σ1(ρ)v2) = 0, (3.27 a)
Gρ(u) = (Ξ0(ρ) + Ξ1(ρ)u+ Ξ2(ρ)u2)(Ξ3(ρ) + Ξ (ρ)u) = 0, (3.27 b)

where the coefficients in the above equations follow from (3.24) and the expressions
for the ci, di given in Appendix C. Now these coefficients are complicated functions of
the bifurcation point (x̄, z̄, γ̄) which, in turn, is obtained from (3.21)–(3.23). In order
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to describe the behaviour of solutions of (3.27) qualitatively we need to consider
fixed values of force length parameter µ, solve (3.21)–(3.23) for the bifurcation point
subject to the data (3.9) and compute the coefficients ci, di, ei (as functions of ρ).
It is not hard to demonstrate computationally that for µ ∈ (0, 0.1064), (3.27 a) is
the generic form for the pitchfork bifurcation since the following criteria are satisfied
(Guckenheimer & Holmes 1983; Wiggins 1990):

∂Fρ
∂v

= 0,
∂Fρ
∂ρ

= 0,
∂2Fρ
∂v2 = 0,

∂F 2
ρ

∂ρ∂v
6= 0,

∂3Fρ
∂v3 6= 0,

when evaluated at the bifurcation point (v, p) = (0, 0). Furthermore, (3.27 b) is the
generic form for the transcritical bifurcation satisfying the following criteria:

∂Gρ
∂u

= 0,
∂Gρ
∂ρ

,
∂2Gρ
∂u2 6= 0,

∂G2
ρ

∂ρ∂v
6= 0,

evaluated at the bifurcation point (u, ρ) = (0, 0). Equilibrium solutions to (3.27) are
given by

u =
−Ξ1 −

√
Ξ 2

1 − 4Ξ0Ξ2

2Σ2
, v = 0, (3.28 a)

u = −Ξ3

Ξ4
, v = ±

√
−Σ0

Σ1
, (3.28 b)

where all Ξi, Σi are functions of ρ and the negative sign on the radical in (3.28 a)
has been chosen consistent with limu = 0, ρ ↓ 0. Note that direct substitution in
(3.26) yields w as well. In order to describe the local physical behaviour (predicted
by (3.28)) near the bifurcation point we need to know how the uniform symmetrical
mode (w0 = γ = γ̄ + ρ), the non-uniform symmetrical mode (w3 = z = z̄ + u)
and the non-symmetrical rigid-body mode (w1 = y = v) vary under increasing load
parameter (βh0 = x = x̄+ w). First expand (3.29) and w (obtained from (3.26)) in
power series about ρ = 0 to get

u = Ω0ρ+O(ρ2), v = 0, w = Ω1ρ+O(ρ2), (3.29 a)

u = Ω2ρ+O(ρ2), v = ±Ω3
√
ρ+O(ρ3/2), w = Ω4ρ+O(ρ2), (3.29 b)

where the Ωi coefficients are functions of the bifurcation point and are easily calcu-
lable once a value of force length parameter µ is selected. While we expect that the
symmetric equilibrium branch given by (3.29 a) will be in some sense ‘stable’ prior to
bifurcation (βh0 < βh̄0 or w < 0), we need to consider the nature of the equilibrium
branches just after bifurcation. The two possibilities are that the pitchfork bifurcation
of v is supercritical (figure 4a), or subcritical (figure 4b). If v is regarded as a func-
tion of w through the transformations w : ρ → Ω1ρ, w : ρ → Ω4ρ, then the criteria
for super and subcritical bifurcations are −(∂2Fρ/∂v

3)(dw/dρ)/(∂2Fρ/∂v∂ρ) > 0 or
−(∂2Fρ/∂v

3)(dw/dρ)/(∂2Fρ/∂v∂ρ) < 0, respectively, when evaluated at the bifur-
cation point. (This distinction will effectively determine when a cavity will form
abruptly (subcriticality) or when it will form gradually (supercriticality).) By cal-
culating values of −(∂2Fρ/∂v

3)(dw/dρ)/(∂2Fρ/∂v∂ρ) for different values of µ it can
be further demonstrated computationally that for µ ∈ (0.0440, 0.1064), the pitchfork
is supercritical, while for µ ∈ (0, 0.0440), the pitchfork is subcritical. Bifurcation
diagrams for the function obtained from (3.29) are given in figure 4b for µ = 0.01
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and in figure 4a for µ = 0.05. Note that Hadamard stability of equilibrium states
has been evaluated consistent with the discussion at the end of §3 a.

The classification of behaviour outlined in (3.16) can now be refined, based on the
local analysis just described, and is given as

µ ∈ (0.1064,∞), no bifurcations,

µ ∈ (0.0440, 0.1064), 2 non-symmetrical bifurcations, supercritical,

µ ∈ (0.0109, 0.0440), 2 non-symmetrical bifurcations, subcritical,

µ ∈ (0, 0.0109), 2 symmetrical
+2 non-symmetrical bifurcations, subcritical,


, (3.30)

where the last entry in each row indicates the criticality of the first pitchfork bifur-
cation. Thus, for µ ∈ (0.1064,∞) (recall that µ is a measure of the range of action of
the force law (2.18)), a symmetric cavity will gradually open under increasing ten-
sile load (ductile decohesion). Within the interval µ ∈ (0.0440, 0.1064), bifurcation
of the symmetric cavity shape will occur and since the first bifurcation is super-
critical, and the non-symmetric branches emanating form the bifurcation point are
stable, a non-symmetric cavity will gradually form after bifurcation under increasing
tensile load (non-symmetric ductile decohesion). For µ ∈ (0, 0.0440), the first bifur-
cation point reached under increasing tensile load is a non-symmetrical subcritical
pitchfork. Because the stable symmetrical branch of equilibria gives way to three
unstable branches emanating from the bifurcation point we conjecture that the sta-
ble symmetric cavity will abruptly change into a stable non-symmetric cavity (brittle
decohesion) at the critical tensile load. In §4, a global computational analysis of post
bifurcation behaviour will be carried out where the classification of behaviour will
be further refined. Note that if the inclusion is constrained against rigid displace-
ment, then symmetric bifurcation occurs according to (3.30), i.e. µ ∈ (0, 0.0109) for
symmetric bifurcation; µ ∈ (0.0109,∞) for no bifurcation.

(d ) Pure shear load
Consider the remotely applied pure shear loading (S∞11 = −S∞22) characterized

by the load parameters h0 = 0, h3 = (4(1 − ν2)/E)S∞11 . Furthermore, assume the
constitutive data given in (3.9). The two term approximation of the symmetrical
solution at a prescribed load parameter h3 and force length parameter µ is readily
determined by solving (3.3) for w0, w3. The bifurcation points which initiate from
the symmetrical branch of equilibria can be obtained by solving (3.3 a) (with h0 =
0), along with detJs = 0 (for symmetrical bifurcations) and detJu = 0 (for non-
symmetrical bifurcations), where the determinants are given in (3.5). The solutions
(Maple Waterloo Software, 1994) indicate that the bifurcation behaviour for varying
values of force length parameter µ is

µ ∈ (0.0095,∞), no roots,
µ ∈ (0.0053, 0.0095), 2 (symmetrical) roots,
µ ∈ (0, 0.0053), 2 (symmetrical) + 2(non-symmetrical) roots.

 (3.31)

An inspection of the analogous results (3.10) (for equibiaxial load) and (3.18) (for
tensile load) given in §§ 3 b and 3 c reveals that there appears to be a qualitative dif-
ference in behaviour between the three load cases. First, behaviour under equibiaxial
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load differs qualitatively from the other two load cases in that symmetrical ductile
decohesion (i.e. no roots) does not occur. Furthermore, roots appear in odd numbers
(equibiaxial load) as opposed to even numbers (shear, tension load). (The physi-
cal significance of this will be addressed in §4.) A comparison between behaviour
under shear and tensile loading indicates that the values of µ, for which behaviour,
other than symmetric ductile decohesion (i.e. no roots), occurs is one order of mag-
nitude smaller for remote shear loading than for remote tensile loading. This is to
be expected owing to the additional constraint imposed on the rigid displacement
of the inclusion by remote shear loading. Furthermore, under remote shear loading,
(3.31) indicates that symmetric ductile decohesion gives way to symmetrical brit-
tle decohesion (two symmetrical roots) under decreasing µ. In contrast, a remote
tensile loading precipitates a change from symmetrical ductile decohesion to non-
symmetrical ductile decohesion under decreasing µ, as indicated by (3.30). In view
of the lack of a valid physical explanation for the response under remote shear load-
ing, we must now consider the ‘reasonableness’ of characterizing behaviour by a three
mode (2 symmetrical + 1 non-symmetrical) approximation.

While it is to be expected that the range of values required for a particular
behaviour ((3.31) for remote shear, (3.18) or (3.30) for remote tension and (3.10)
or (3.16) for remote equibiaxial load) will change with the number of modes (n)
in the approximation (2.10), what is not obvious is whether or not the behaviour
changes qualitatively with n. It has been implicitly assumed so far that the bifur-
cation behaviour predicted by the two mode approximation for equibiaxial load or
the three mode approximation for tensile load coincides with the actual bifurcation
behaviour of the system (2.2) and (2.4). This assumption, while true for remote
equibiaxial and tensile loading, is generally not true for remote shear loading. In
order to see this, consider the five mode approximation (three symmetric modes and
two non-symmetric modes) given by (2.10) with n = 4. The governing equations
(2.9) for this order of approximation are much too complicated to analyse directly
according to the local methods of §§ 3 b and 3 c. They can, however, be integrated
numerically by a method to be outlined in §4. Figures 5 and 6 show bifurcation
diagrams for the three mode and the five mode approximation, respectively. In the
figures, us is the sum of the symmetric modes and uu is the sum of the non-symmetric
modes:

us = u0 +
∑

i=1,2,...

u4i−1, uu =
∑

i=1,2,...

u4i−3. (3.32)

The load is taken to be a remotely applied shear and the force length parameter
µ is taken to be 0.0075. Figure 5 for the three mode approximation is consistent
with (3.31) in that there are two bifurcation points, corresponding to a local maxi-
mum and a local minimum, which give rise to symmetric, brittle decohesion as the
load parameter h3 is increased. These are tangent bifurcations†. Note that no other
branches of equilibria exist and uunsym = 0. The bifurcation diagram for the five
mode approximation (figure 6), however, is qualitatively different from the three
mode approximation in that it predicts branches of non-symmetric equilibria (parts
of which are stable, see §4). In fact, the behaviour under a remotely applied pure
shear will turn out to be qualitatively consistent with the behaviour under a remote
tensile load.

† This can be shown formally by the local methods outlined in § 3 c.

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


2438 A. J. Levy

Figure 5. Bifurcation diagram (three mode approximation). Remote shear (µ = 0.0075).

In the following section, a numerical method will be employed to investigate the
global bifurcation behaviour of the system as well as the sensitivity of the number
of modes (n) on behaviour.

4. Global bifurcation analysis

In order to determine the stable equilibrium states, or cavity shapes, that occur
after bifurcation, a global analysis of behaviour is required. Because the governing
equations (2.9) do not admit closed form solutions, a computer program, employing
the the Newton–Raphson method together with the composite Simpson 1

3 rule, was
written to solve the system numerically (Press et al. 1992). Thus, mode multipliers
(ui) are sought for fixed constitutive parameters (3.9), fixed force length ratio µ and
at increasing values of the remote load parameter, h0 or h3, which is increment-
ed in the computations. Non-symmetric solutions (u4i−3, i = 1, 2, . . .) are triggered
in the calculations by guessing an initial state consistent with the results of local
analysis, e.g. (3.28). Typically, the analysis is carried out for a seven mode approxi-
mation including four symmetric modes and three non-symmetric modes. Stability of
a particular equilibrium is assessed according to the Hadamard criterion by numer-
ical determination of the eigenvalues of the matrix of second partial derivatives of
the total potential energy evaluated at the equilibrium. In the following discussion
attention is paid to behaviour under remote equibiaxial loading, tensile loading and
remote pure shear loading.
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Figure 6. Bifurcation diagram (five mode approximation). Remote shear (µ = 0.0075).

(a ) Equibiaxial load
Figures 7–9 are three-dimensional bifurcation diagrams of the symmetrical and

non-symmetrical mode multipliers us(h0), uu(h0) defined by (3.32). The diagrams
depict behaviour described in each of the intervals (3.16) obtained from the two
mode approximation. (Naturally, these intervals will change owing to the increased
accuracy of the seven mode approximation.) Thus, for µ = 0.055, figure 7 indicates
that at the bifurcation point (maximum interface force) the stable branch of rota-
tionally symmetric equilibria becomes unstable and there appear two stable branch-
es of non-symmetric (with respect to the e2 − e3 plane) equilibrium cavity shapes.
Under increasing remote load, the inclusion gradually displaces in a rigid manner in
a direction which is ultimately dictated by any imperfections in the system. (Note
that for the purposes of analysis we have precluded rigid displacement in all but
the e1 direction.) The decohesion process at µ = 0.055 is therefore ductile and non-
symmetric. The behaviour for parameter value µ = 0.030 is graphically depicted in
figure 8. In this case, the stable branch of rotationally symmetric equilibria becomes
unstable at bifurcation and two non-symmetric branches are born. The stability of
these two branches is such that the parts emanating from the bifurcation point are
unstable until tangent bifurcation points are reached whereby the branches become
stable. Thus, a transition from a stable rotationally symmetric cavity to a stable non-
symmetric cavity cannot be affected continuously and the (rotationally symmetric)
cavity changes abruptly, i.e. discontinuously, to a stable adjacent equilibrium state
which is non-symmetric. In this instance, decohesion is brittle and non-symmetric.
Note that in the two cases just considered the imposition of a constraint of rotational

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


2440 A. J. Levy

Figure 7. Bifurcation diagram (seven mode approximation). Equibiaxial load (µ = 0.055).

symmetry (i.e. uu(h0) = 0) renders them to be qualitatively identical in that there
then exists one stable branch of rotationally symmetric equilibria and decohesion
is ductile. Consider now the behaviour at parameter value µ = 0.010 (figure 9).
Qualitatively, the behaviour is similar to the previous one in that rotationally sym-
metric equilibria give way to the abrupt formation of stable non-symmetric cavities.
The difference lies in behaviour, which is constrained to be rotationally symmetric.
Unlike the previous two cases, in which one stable branch exists, here, rotationally
symmetric bifurcation can occur, i.e. under increasing load, a continuous transition
of rotationally symmetric equilibrium states cannot be affected and rotationally sym-
metric, brittle decohesion occurs.

Values of force length parameter which give rise to a particular type of behaviour
were given, for the two mode approximation, by (3.16). The same intervals, for the
the seven mode approximation, are

µ ∈ (0.053,∞), 1 non-symmetrical bifurcation, supercritical,

µ ∈ (0.01, 0.053), 1 non-symmetrical bifurcation, subcritical,

µ ∈ (0, 0.014), 1 non-symmetrical
+2 symmetrical bifurcations, subcritical,


(4.1)

where the quantitative differences between (3.16) and (4.1) are due to the increased
accuracy of the seven mode approximation. Note that the length of the last interval
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Figure 8. Bifurcation diagram (seven mode approximation). Equibiaxial load (µ = 0.030).

in (3.16) and (4.1) is identical owing to the fact that an exact solution to the pre-
bifurcated equilibrium state requires only one uniform mode.

The abrupt, non-symmetric transition, which occurs at load parameter h0 and
force length parameter values µ ∈ (0, 0.053), is represented pictorially in figures 10a,b,
which depict cavity shapes just before, and just after, bifurcation (at maximum
interface force). Because the inclusion is rigid, the normalized (radial) displacement
jump u characterizes the displacement of the inner boundary of the matrix so that
the (normalized) inner radius (of the matrix) is r/R : θ → 1 + u(θ), where u is
given by (2.7). (For the purpose of visualization, the magnitude of the effect has
been enhanced by a factor of 5, i.e. the inner radius of the matrix is taken to be
1 + 5u0 + 5

∑6
i=1 u2i−1 cos iθ and not 1 + u0 +

∑6
i=1 u2i−1 cos iθ.) Note that after

bifurcation there is significant stretching of the inner boundary of the matrix to
accomodate the rigid inclusion (figure 10b).

The distribution of interface traction magnitude (f) acting on the inclusion surface
follows directly from (2.10) and (2.18). For the 7 term approximation it is given by

f

σmax
= βµ−1

(
u0+

6∑
n=1

u2n−1 cosnθ
)

exp
(

1−βµ−1
(
u0+

6∑
n=1

u2n−1 cosnθ
))

, (4.2)

where the coefficients ui have been obtained numerically. Figure 11 represents
the distribution f acting on the inclusion surface just before bifurcation (h0 =
0.00987 − O(10−6)) and just after bifurcation (h0 = 0.00987 + O(10−6)). At bifur-
cation the uniform distribution of interface force (σmax) gives way to a non-uniform
distribution which is such that a large portion of interface is virtually unloaded.
There are, however, portions of interface which are subjected to large tensile traction
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Figure 9. Bifurcation diagram (seven mode approximation). Equibiaxial load (µ = 0.010).

Figure 10. Cavity shapes. (a) Just prior to bifurcation at maximum interface force (h0 =
0.009 87 − O(10−6)). (b) Just after bifurcation at maximum interface force (h0 = 0.009 87+
O(10−6)) (µ = 0.010).

of magnitude σmax as well as portions which experience compressive traction. The
compressive traction corresponds to normal contact forces while the tensile traction
corresponds to normal action at a distance forces.

With the mode multipliers ui known, the circumferential interface displacement
jump (v) follows by integration (MAPLE 1994):

v(θ) =
N∑
n=1

v2n sinnθ,
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Figure 11. Interface force distribution on a rigid inclusion just before (uniform,
h0 = 0.009 87−O(10−6)) and just after (non-uniform, h0 = 0.009 87 +O(10−6)) bifurcation

(µ = 0.010).

where use has been made of (2.16)–(2.18) and the fact that for equibiaxial load
hθ(θ) = 0. Figure 12 is a graph of v(θ) for the case where µ = 0.01 and h0 =
0.00987 + O(10−6), i.e. just after bifurcation (see figure 10b). In figure 12, N has
been taken to be 5. As expected, v, which is an odd function of θ, vanishes at
θ = 0, π.

(b ) Tensile load
Figures 13–16 are bifurcation diagrams of the symmetrical and non-symmetrical

mode multipliers us(h0), uu(h0) defined by (3.32). The diagrams depict behaviour
described in each of the µ intervals (3.30) which were obtained from the three mode
approximation. Thus, for µ = 0.2, figure 13 indicates that no bifurcations occur and
that a stable, symmetric cavity exists for all values of remote load. The decohe-
sion process is therefore symmetrical and ductile. Figure 14 depicts behaviour for
µ = 0.05. Here, two non-symmetrical, supercritical bifurcations exist on the sym-
metrical branch of equilibria. The stability characteristics of the branches indicates
that under increasing load the stable, symmetrical cavity gives way to the gradu-
al formation of a stable non-symmetrical cavity. The behaviour is therefore one of
non-symmetrical ductile decohesion which, under increasing load, is characterized
by the progressive rigid displacement in either direction along the remote load line.
According to the figure, this process persists until an equilibrium state is reached
whereby the rigid displacement of the inclusion reverses itself and, after some grad-
ual movement, abruptly displaces towards its original symmetrical position at the
two symmetrically situated tangent bifurcations. Thereafter, the cavity shapes are all
symmetric and occur progressively with increasing load. Figure 15 shows the bifurca-
tion behaviour for the smaller force length parameter µ = 0.012. For this case, there
are still two non-symmetrical bifurcations; however, the first is now subcritical. As
indicated in the figure, the stability of the branches is such that, under increasing
load, a stable symmetric cavity abruptly changes to a stable non-symmetric cavity
at the first bifurcation, so the decohesion process is therefore brittle. With further
loading the inclusion progressively displaces away from its symmetric state until
a (tangent bifurcation) point is reached where the inclusion displacement reverses
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Figure 12. Circumferential interface displacement jump distribution just after bifurcation
(h0 = 0.009 87 +O(10−6)) (µ = 0.010).

itself abruptly. Subsequent loading reveals a progressively growing cavity which is
symmetric. With a further reduction of interface force length parameter (µ), two
additional symmetrical bifurcations appear on the symmetric branch of equilibria
consistent with (3.30). Figure 16 illustrates this behaviour for µ − 0.005. Qualita-
tively, the behaviour is no different from the previous case considered since the two
additional (tangent) bifurcations that appear in figure 16 do not affect behaviour.
(The first bifurcation reached under increasing load is an abrupt transition from a
stable symmetrical cavity to a stable non-symmetric cavity and preceeds the stable
but abrupt symmetric cavity to symmetric cavity transition implied by the two addi-
tional symmetric bifurcations.) Of course, if the inclusion were constrained against
rigid displacement, then the behaviour at µ = 0.012 and µ = 0.005 would be quali-
tatively different and essentially given by the symmetric branches of figures 13–16.
Note that in figure 16 the second non-symmetric bifurcation (on the symmetric
branch of equilibria) occurs at a value of load parameter (h0) which is larger than
that required for the first non-symmetric bifurcation. With a still further reduction
in µ, the bifurcation diagram changes so that the value of h0 at which the second
non-symmetric bifurcation occurs is less than that value required for the first (fig-
ure 17). For this case, it appears that there are now three (two non-symmetric and
one symmetric) stable post bifurcation equilibrium states. Again, owing to the fact
that non-symmetric bifurcation initiates first, i.e. at a lower value of h0, it appears
that the behaviour is qualitatively the same as that depicted in figures 15 and 16.

The force length parameter intervals required for a given behaviour were given
by (3.30) for the three mode approximation. The same intervals for the seven mode
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Figure 13. Bifurcation diagram (seven mode approximation). Tensile load (µ = 0.200).

approximation are

µ ∈ (0.189,∞), no bifurcations,

µ ∈ (0.028, 0.189), 2 non-symmetrical bifurcations, supercritical,

µ ∈ (0.011, 0.028), 2 non-symmetrical bifurcations, subcritical,

µ ∈ (0, 0.011), 2 symmetrical
+2 non-symmetrical bifurcations, subcritical.


. (4.3)

Obviously, the quantitative differences between (3.30) and (4.3) are due to the more
accurate higher approximation. A summary of cavity nucleation under remote ten-
sile load is therefore that, as the force length parameter µ decreases, the behaviour
changes from the gradual formation of symmetric cavities (symmetric, ductile deco-
hesion) to the gradual formation of non-symmetric cavities (non-symmetric, duc-
tile decohesion), followed by the abrupt formation of non-symmetric cavities (non-
symmetric, brittle decohesion). In the above description, the transitions initiate from
a symmetric cavity shape and occur under increasing load. The behaviour is phys-
ically reasonable and consistent with results from the equibiaxial load case in that
decreasing µ tends to make the decohesion process more brittle. Of course, for the ten-
sile load case, symmetric ductile decohesion can occur while this behaviour is absent
for equibiaxial loading (i.e. the inclusion must eventually displace rigidly). The some-
what anomalous (and unanticipated) subsequent behaviour of abrupt reversal of rigid
displacement towards the symmetric inclusion state (which occurs for three of the
force length parameter intervals (4.2)) is more difficult to explain. The fact that it is
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Figure 14. Bifurcation diagram (seven mode approximation). Tensile load (µ = 0.050).

absent in the equibiaxial load case seems to indicate that it is a consequence of the
compressive constraint of surrounding material (Poisson effect) normal to the tensile
load direction.

Normalized† cavity shapes at various values of remote load and force length param-
eter µ are readily obtained (as in §4 a) by graphing the radius of the inner boundary
of the matrix. Figures 18 and 19 depict typical cavity shapes for µ and h0 values of
0.2, 0.015 and 0.05, 0.019, respectively. By (4.3), these are typical equilibrium shapes
occuring in a symmetrical (figure 18) or non-symmetrical (figure 19) ductile deco-
hesion process. Note that there is a distortion of the inner boundary of the matrix
around the rigid inclusion consistent with the remote tensile loading; however, there
is some interpenetration in regions which are roughly 90◦ to the load line. This is
due, in part, to the error incurred in the series approximation of the solution but also
to the fact that the interface force law (2.18) allows for relatively small amounts of
interpenetration to occur under compressive tractions. The interfacial traction (f),
for the parameter values of figures 18 and 19, is obtained from (2.18) and figures 20
and 21 show polar plots of f distributed on the inclusion surface. For the symmetri-
cal cavity shape of figure 18, figure 20 indicates that tensile traction acts across the
interface gap along the load line while perpendicular to it there is compressive trac-
tion which is to be interpreted as a contact traction acting on the inclusion surface.
With further increase in applied load, the magnitude of the tensile traction decreases

† With respect to inclusion radius R.
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Figure 15. Bifurcation diagram (seven mode approximation). Tensile load (µ = 0.012).

while the contact traction increases as the cavity elongates and distorts around the
rigid inclusion. Figure 21 is a plot of f for the (non-symmetric) cavity shape shown
in figure 19. Note that the rigid displacement of the inclusion leftward results in
virtually no interface force on the right region about the load line. The rest of the
inclusion boundary has alternating regions of tensile and compressive loads consis-
tent with equilibrium. Further increase in remote loading causes a void to open up
non-symmetrically until a point is reached where the inclusion, in fact, displaces back
towards its original position. Upon further loading the inclusion abruptly jumps to
this location (figure 22b for h0 = 0.021 22 +O(10−6)) from a non-symmetrical state
(figure 22a for h0 = 0.021 22−O(10−6)). Figure 23 is a polar plot of the interface force
distributions just before and just after this phenomenon. Note that in both states,
regions to the left and right of the inclusion are almost completely unloaded while
above and below the inclusion centre there are small regions of boundary subject
to contact pressures. Further loading results in symmetrical equilibrium states with
smaller and smaller regions of contact surface subject to larger and larger pressures.
Consider next the parameter value µ = 0.012 which, by (4.3), gives rise to a non-
symmetrical, brittle decohesion process. Figures 24a,b show the stable cavity shapes
that exist at virtually identical values of remote load parameter, i.e. figure 24a occurs
for h00.004 17 − O(10−6), while figure 24b occurs for h0 = 0.004 17 + O(10−6). The
figures indicate that the cavity changes abruptly from a small symmetrical shape to
a larger non-symmetrical shape formed by the rigid displacement of the inclusion
within it. Figure 25 represents a polar plot of the interface force distributions (f) for
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Figure 16. Bifurcation diagram (seven mode approximation). Tensile load (µ = 0.005).

these two cavity shapes. The symmetrical force distribution which occurs just prior
to bifurcation has tensile regions right and left along the load line and compressive
regions perpendicular to these. Just after bifurcation, the right side of the inclusion
near the load line abruptly unloads consistent with the sudden displacement of the
inclusion leftward. Further loading results in behaviour described for parameter value
µ = 0.05.

The circumferential displacement jump (v) can be computed, as for the equibi-
axial load case, by direct integration of (2.16)–(2.18). (Note that, for remote ten-
sile loading, the normalized (with respect to inclusion radius) circumferential dis-
placement of the inner boundary of the matrix in the absence of the inclusion is
hθ(θ) = −(2(1 − ν2)/E)S∞11 sin 2θ.) Now consider v (figure 26) just before and just
after non-symmetrical decohesion at the force length parameter value µ = 0.012 and
the load parameter h0 = 0.004 17 (the cavity shapes are shown in figures 24a,b). As
expected, just prior to bifurcation, the distribution of circumferential displacement
jump is symmetrical and vanishes at four locations θ = 0, 1

2π, π and 3
2π, which are in

line with, and perpendicular to, the line of the remote load (figure 26). Just at bifur-
cation, the circumferential jump abruptly changes such that the zeros perpendicular
to the line of the loading shift toward θ = π, so as to accomodate the rigid displace-
ment of the inclusion leftward. Furthermore, the magnitude of the jump decreases
near the bonded portion of interface and increases near the opposite decohered region
(figure 26).

If the sequence of partial sums of the series (2.10) for u converges to a limit func-
tion, then the limit function is a solution to (2.2) and (2.4). Alternatively, the con-
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Figure 17. Bifurcation diagram (seven mode approximation). Tensile load (µ = 0.002).

Figure 18. Cavity shape (h0 = 0.015) (µ = 0.200).

vergence of at least a subsequence of the sequence of partial sums of the series (2.10)
is guaranteed by Hammerstein’s theorem on nonlinear integral equations. Rates of
convergence of the mode multipliers ui can be inferred from a tabulation of the multi-
pliers for various levels of approximation. Thus, table 1 depicts the mode multipliers
for the three, four, five, six and seven mode approximations at a force length param-
eter of µ = 0.01 and a load parameter h0 = 0.004 50. The table indicates a rapid rate
of convergence with the difference between the six and seven mode approximations
for the ui being on the order of 1 part in 100 (for the first four modes). (Recall that
(3.30) and (4.3) indicate the qualitative similiarity in behaviour between the three
and seven mode approximations.)
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Figure 19. Cavity shape (h0 = 0.019) (µ = 0.050).

Figure 20. Interface force distribution on a rigid inclusion (h0 = 0.015) (µ = 0.200).

Figure 21. Interface force distribution on a rigid inclusion (h0 = 0.019) (µ = 0.050).

(c ) Pure shear load
Results for the case where the remote loading is a pure shear are qualitatively the

same as those obtained in §4 b (for remote tension loading) and will not be presented
graphically. The magnitudes of the intervals of force length parameter µ which yield
a given nucleation behaviour are, however, different from those given in (4.2). Thus,
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Figure 22. Cavity shapes. (a) Unsymmetrical state just prior to bifurcation (h0 = 0.02122−
O(10−6)). (b) Symmetrical state just after bifurcation (h0 = 0.02122 +O(10−6)) (µ = 0.050).

Figure 23. Interface force distribution on a rigid inclusion just before (non-symmetrical,
h0 = 0.02122 − O(10−6)) and just after (symmetrical, h0 = 0.02122 + O(10−6)) bifurcation
(µ = 0.050).

Figure 24. Cavity shapes. (a) Symmetrical state just prior to bifurcation (h0 = 0.00417−
O(10−6)). (b) Unsymmetrical state just after bifurcation (h0 = 0.00417 +O(10−6)) (µ = 0.012).

for remote shear, there is

µ ∈ (0.029,∞), no bifurcations,
µ ∈ (0.018, 0.029), 2 non-symmetrical bifurcations, supercritical,
µ ∈ (0.009, 0.018), 2 non-symmetrical bifurcations, subcritical,
µ ∈ (0, 0.009), 2 symmetrical

+2 non-symmetrical bifurcations, subcritical.


. (4.4)

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


2452 A. J. Levy

Figure 25. Interface force distribution on a rigid inclusion just before (symmetrical, h0 =
0.004 17 − O(10−6)) and just after (non-symmetrical, h0 = 0.004 17 + O(10−6)) bifurcation
(µ = 0.012).

Figure 26. Circumferential interface displacement jump distribution just before
(h0 = 0.004 17−O(10−6)) and just after (h0 = 0.004 17 +O(10−6)) bifurcation (µ = 0.012).

By comparison with (4.3), it is apparent that the window of parameter values (µ),
for which either gradual or abrupt non-symmetrical decohesion occurs, is smaller
for remote shear than for remote tensile loading. That is, for remote shear, the
interface force (f) would have to act over a shorter range in order for bifurcation
to occur owing to the additional constraint due to the remote compressive stress
which, together with remote tension, comprises shear loading. Another aspect of
behaviour is the fact that, under remote tension, the window of µ values which give
rise to non-symmetrical, ductile decohesion is larger then the window which yields
non-symmetrical, brittle decohesion. When the remote loading is a pure shear this is
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Table 1. Convergence of mode multipliers; remote tension
(m = 0.01, h0 = 0.0045.)

n u0 u1 u3 u5 u7 u9 u11

3 0.004 36 0.006 21 0.004 31
4 0.004 65 0.007 97 0.005 43 0.001 92
5 0.004 28 0.007 45 0.005 59 0.002 32 0.000 72
6 0.004 43 0.007 67 0.005 65 0.002 21 0.000 58 −0.000 21
7 0.004 46 0.007 77 0.005 71 0.002 24 0.000 47 −0.000 32 −0.000 31

reversed with the larger window of parameter values being that which gives rise to
brittle, non-symmetrical behaviour. Of course, overall, the window of µ values for a
given behaviour are smaller for shear then for tensile loading. Note that the behaviour
described by (4.4) is not consistent with the predictions of the local analysis (based
on the three mode approximation) carried out in §3 d, i.e.

µ ∈ (0.0095,∞), no bifurcations,
µ ∈ (0.0053, 0.0095), 2 symmetrical bifurcations,
µ ∈ (0, 0.0053), 2 symmetrical + non-symmetrical bifurcations.

 (4.5)

This fact was noted in §3 d as well, where the results of the three mode approxi-
mation were compared with a numerical calculation of behaviour for the five mode
approximation. The consistency of behaviour for the four (not shown) five, six (not
shown) and seven mode approximations indicate that for remote shear, at least four
modes are required for a correct qualitative prediction.

5. Concluding remarks

The viewpoint adopted in this paper has been that cavity nucleation, and the
various phenomena associated with it, is a process that occurs naturally through the
interaction of remote load, elastic matrix and inclusion and nonlinear interface force–
interface separation mechanism. Because the analysis employs no ad hoc assumptions
concerning nucleation, further assessment of the predictions of the classical nucleation
criteria, begun in the Introduction, may now be given against those presented in
the preceeding sections. To this end, reconsider the case of a rigid inhomogeneity
embedded in an unbounded matrix subject to a remote equibiaxial load (figure 1).
Recall that the critical interfacial stress criterion yields the value S∗S (given by (1.1))
for the remote load required for ‘nucleation’. (It has been noted previously (§1)
that the precise meaning of the term nucleation in the critical stress criterion is
never explicitly stated.) Now condition (3.8) relates the physical and geometrical
parameters at bifurcation, i.e. at the maximum value of the interface force. For the
rigid inhomogeneity, (3.8) may be written as

S∗ =
σmax

2(1− ν)
+

β−1µE

2(1− µ2)
. (5.1)

If the interface is regarded as rigidly bonded, i.e. there is no interfacial separation
prior to the attainment of S∗, then µ ↓ 0 (figure 3) and, as required, S∗ ↓ S∗S.
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(Note that (3.7 a) and (3.7 c) imply that when µ ↓ 0 the critical load for rotationally
symmetric bifurcation is also σmax/(2(1−ν)).) Because the event that occurs with the
satisfaction of S = S∗ for small m is abrupt (brittle) non-symmetrical decohesion (see
(3.16)), a comparison of S∗ with the critical interfacial stress criterion S∗S (given by
(1.1)) indicates that S∗S underestimates the remote stress required for this behaviour;
the magnitude of the error being worse for longer range forces and smaller inclusion
radii (recall µ = δ/R). It appears then, that the critical interfacial stress criterion
gives a reasonable prediction of the onset of brittle non-symmetrical decohesion when
the interfacial force is short range. (Note that the critical event is the abrupt rigid
displacement of the inhomogeneity within a suddenly larger cavity.) For longer range
forces (larger µ), the criterion is virtually meaningless since no critical event (such as
brittle decohesion) occurs when S = S∗S (see (3.16)). In fact, it is (5.1), and not (1.1),
which governs the transition from the gradual formation of rotationally symmetric
cavities to the gradual development of non-symmetric cavities.

When the remote load is uniaxial, tension interfacial traction is distributed non-
uniformly along the interface. The critical interfacial stress criterion implies that
when (1.3) is satisfied, i.e. the interface strength is attained at θ = 0, π, a cavity
‘nucleates’. This criterion cannot be valid, even in the limit of a coherent interface
(µ ↓ 0), because no critical event is associated with it. This follows from the fact that
bifurcation is governed by the vanishing of the determinants (2.13) and (2.14). These
relations constrain the distribution of slope of the interface force law at bifurcation
but are not equivalent to simply requiring a zero slope at the points θ = 0, π.

It is obvious that the basic mechanisms by which cavities nucleate will be strongly
influenced by both the constitutive characteristics of the matrix and interface, and
the interaction effects of neighbouring inclusions. In this regard, the effects of non-
linear matrix material behaviour and interfacial friction, neither of which is included
in this paper yet both of which occur in real materials, will need to be considered
in future work. The incorporation of matrix plasticity in the framework present-
ed in this paper can be expected to yield formidable mathematical difficulties. The
incorporation of frictional effects at the interface can be expected to lead to a more
mathematically tractable problem; however, the difficulty would be in choosing an
appropriate form of the tangential force–tangential separation relation which is suf-
ficiently general. The effects of inclusion–inclusion interaction on the formation of
cavities can be expected to be severe in situations of practical interest; that is, inclu-
sions which are added to the matrix in non-dilute concentration so as to realize
improved aggregate properties. Solutions of the type described in this paper may
be used as building blocks to construct overall effective moduli of an aggregate con-
sisting of inclusions which decohere from the matrix according to interface force law
(2.18). While the effective medium models employing these ‘solitary defect’ solutions
are in a sense approximate they can be used to give a qualitative picture of aggre-
gate behaviour. (An analysis of the effective transverse bulk modulus of a composite
whose fibres decohere according to force law (2.18), and which implements solitary
inclusion solutions of the kind described here, is given in Levy (1996).)

Finally, while the analysis described in this paper assumes that cavity nucleation is
in essence an infinitesimal strain phenomenon†, an extensive literature exists (largely

† Although cavities have been observed in material subject to small overall straining (Rogers 1960;
Hahn & Rosenfield 1966; Cox & Low 1974; Nutt & Needleman 1987), this fact does not necessarily
guarantee the validity of an infinitesimal strain framework.
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beginning with the work of Ball (1982)) which treats cavitation within the framework
of finite strain elasticity. In these theories, cavitation is not caused by stress concen-
trators but by a fundamental material instability, the existence of which hinges on
the nonlinear kinematics inherent in a finite strain formulation. Depending on the
constitutive characteristics of the material and the geometry of the solid (e.g. uni-
form or composite sphere or cylinder), a variety of behaviours can occur ranging
from gradual to abrupt formation of radially symmetric (or possibly non-symmetric)
cavities. For a general review of research on this problem, see Horgan & Polignone
(1995).

Appendix A. Kernels Kr, Kθ and inhomogeneous terms hr,hθ
The terms Kr, Kθ, hr and hθ appearing in (2.2) and (2.3) have been presented in

Levy (1991). The kernel Kr is symmetric and weakly singular with the form

Kr =
1− ν∗2
πE∗

+
[

1− ν2

πE
+

1− ν∗2
πE∗

]
cos(θ−θ′) log(1−cos(θ−θ′))+Φ(θ−θ′) sin(θ−θ′),

where Φ(θ) is 2π periodic and odd in φ, i.e. for 0 < φ < 2π, 2πΦ = [(1 + ν)(1 −
2ν)/E − (1 + ν∗)(1− ν∗)/E∗](π − φ). Kr has a mean convergent Fourier expansion
given by the bilinear formula for weakly singular kernels (Mikhlin 1960):

Kr(θ − θ′) =
∞∑
i=1

ϕi(θ)ϕ(θ′)
λi

, (A 1)

with eigenvalues

λ0 =
−EE∗

(1 + ν∗)(1− 2ν∗)E + (1 + ν)E∗
, (A 2)

λ2n−1 = λ2n

=
−(n2 − 1)EE∗

2n[(1− ν∗2)E + (1− ν2)E∗] + (1 + ν)(1− 2ν)E∗ − (1 + ν∗)(1− 2ν∗)E
,

n = 2, 3, . . . (A 3)

and eigenfunctions

ϕ0 =
1√
2π
, ϕ2n−1 =

cosnθ√
π

, ϕ2n =
sinnθ√

π
, n = 2, 3, . . . (A 4)

Furthermore, the kernel Kθ takes the form

Kθ = −
[

1− ν2

πE
+

1− ν∗2
πE∗

]
sin(θ − θ′) log(1− cos(θ − θ′)) + Φ(θ − θ′) cos(θ − θ′)

and has a mean convergent Fourier expansion

Kθ =
∞∑
n=2

{[
2(1− ν2)

E
+

2(1− ν∗2)
E∗

]
+
[

(1 + ν)(1− 2ν)
E

− (1 + ν∗)(1− 2ν∗)
E∗

]
n

}
×ϕ2n(θ)ϕ2n−1(θ′)− ϕ2n−1(θ)ϕ2n(θ′)

n2 − 1
. (A 5)

Note that the expansions for Kr and Kθ do not have terms proportional to sin θ
and cos θ. This is due to the constraint of rigid-body equilibrium of the inclusion
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characterized by (2.4) in integral equations (2.2) and (2.3). Finally, it has been shown
(Levy 1991) that, for remote equibiaxial loading, the inhomogeneous terms (hr, hθ)
in (2.2) and (2.3) assume the forms

hr(θ) =
1− ν2

E
[(S∞11 + S∞22) + 2(S∞11 − S∞22) cos 2θ] = h0 + h3 cos 2θ,

hθ(θ) =
2(1− ν2)

E
(S∞11 − S∞22) sin 2θ. (A 6)

Appendix B. The demonstration that the Iij −
∫ 2π
0 Γ (θ) cos iθ cosjθ dθ,

with Γ (θ) = Γ (θ + π), satisfy equation (B 1)

Iij =

 0, i odd (even), j even (odd),

2
∫ π

0
Γ (θ) cos iθ cos jθ dθ, i, j odd or i, j even.

(B 1)

Let Γ (θ) be a continuous and bounded function such that Γ (θ) = Γ (θ + π).
For i, j fixed, split Iij into two integrals Ia

ij , I
b
ij over the subdomains (0, π) and

(π, 2π), respectively. Now change the variable of integration in Ib
ij according to φ =

θ − π and note that cos i(φ+ π) = (−1)i cos iφ. Then Ib
ij = (−1)i(−1)jIa

ij and the
sum Iij = Ia

ij + Ib
ij is (1 + (−1)i(−1)j)Ia

ij , which demonstrates the assertion.
In order to show that (2.9 b) and (2.9 d) (with j odd) are identically satisfied for

symmetrical solutions u(θ), let Γ (θ) = f(u(θ)), with u(θ) = u0 +
∑n

i=1 u2i−1 cos iθ.
Now, symmetrical solutions u(θ) require that u2k−1 = 0, k = 1, 3, . . ., so that Γ (θ) =
Γ (θ + π). Then the result follows directly from Iij = (1 + (−1)i(−1)j)Ia

ij by letting
i = 0 and j = 1, 3, . . .

Appendix C. The coefficients ai, bi, ci, di and ei

The coefficients a0, a2, b1, b3 appearing in (3.12) have the form

a0(ρ) = −x̂+ (1 + ρ)(µ+ α0e−(1+ρ)),

a2(ρ) = − 1
4α0e−(1+ρ)(1− ρ),

b0(ρ) = − 1
2α0e−(1+ρ)ρ,

b3(ρ) = 1
16α0e−(1+ρ)(2− ρ).

The coefficients appearing in (3.24) and (3.26) are of the form

c0(ρ) = µρ+ e−(γ̄+ρ)[(α0γ̄ + α0ρ− x̄α3)I0(x̄) + (α3 + α3ρ+ α3γ̄ − x̄α0)I1(x̄)]

−e−γ̄ [(α0γ̄ − x̄α3)I0(x̄) + (α3 + α3γ̄ − x̄α0)I1(x̄)],

c1(ρ) = − 1
2µ− e−(γ̄+ρ)[(α0x̄+ α3 − α3γ̄ − α3ρ)I0(x̄)

+(−α0ρ− α0γ̄ + α3ρx̄
−1 + α3x̄

−1 + 3
4α3x̄)I1(x̄) + 1

4α3x̄I3(x̄)],

c2(ρ) = −e−(γ̄+ρ)[( 1
2α0 − 1

4α0γ̄ − 1
4α0ρ+ 3

16 x̄α3)I0(x̄)

+( 3
8α0x̄− 3

8α3ρ− 3
8α3γ̄ + 3

4α3)I1(x̄) + (1
2α0 − 1

4α0γ̄ − 1
4α0ρ+ 1

4α3x̄)I2(x̄)

+( 1
8α0x̄− 1

8α3ρ− 1
8α3γ̄ + 1

4α3)I3(x̄) + 1
16 x̄α3I4(x̄)],
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c3(ρ) = −e−(γ̄+ρ)

×[(1
2α0 − 1

4α0γ̄ − 1
4α0ρ− 1

8 x̄α0 − 1
4α3 + 1

8 γ̄α3

+ 1
8 γ̄α3 + 1

8ρα3 + 1
8 x̄α3)I0(x̄)

−( 1
2α0 − 1

4α0γ̄ − 1
4α0ρ− 1

4 x̄α0 − 1
2α3 + 1

4 γ̄α3 + 1
4ρα3 + 3

16 x̄α3)I1(x̄)

+(− 1
8 x̄α0 − 1

4α3 + 1
8 γ̄α3 + 1

8ρα3 + 1
8 x̄α3)I2(x̄)− 1

16 x̄α3I3(x̄)],

d1(ρ) = 1
2α0e−(γ̄+ρ)[(1− γ̄ − ρx̄)I0(x̄) + (γ̄ + ρ+ x̄)I1(x̄)],

d2(ρ) = − 1
2α0e−(γ̄+ρ)[(1− 1

2 γ̄ − 1
2ρ− 1

2 x̄)I0(x̄)− (2− γ̄ − ρ+ 3
4 x̄)I1(x̄)

+(1− 1
2 γ̄ − 1

2ρ− 1
2 x̄)I2(x̄)− 1

4 x̄I3(x̄)],

e0(ρ) = µρ+ e−(γ̄+ρ)[(α0γ̄ + α0ρ)I0(x̄)− x̄α0I1(x̄)]− e−γ̄ [α0γ̄I0(x̄)− x̄α0I1(x̄)],

e1(ρ) = −e−(γ̄+ρ)[α0x̄I0(x̄) + (−α0ρ− α0γ̄)I1(x̄)],

e2(ρ) = −e−(γ̄+ρ)[( 1
2α0 − 1

4α0γ̄ − 1
4α0ρ)I0(x̄)

+3
8α0x̄I1(x̄) + (1

2α0 − 1
4α0γ̄ − 1

4α0ρ)I2(x̄) + 1
8α0x̄I3(x̄)],

e3(ρ) = −e−(γ̄+ρ)[( 1
2α0 − 1

4α0γ̄ − 1
4α0ρ− 1

8 x̄α0)I0(x̄)

−(1
2α0 − 1

4α0γ̄ − 1
4α0ρ− 1

4 x̄α0)I1(x̄)− 1
8 x̄α0I2(x̄)].
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